<dl id="u0p1x"><menu id="u0p1x"><small id="u0p1x"></small></menu></dl>

    <sup id="u0p1x"></sup>

    <div id="u0p1x"><ol id="u0p1x"><thead id="u0p1x"></thead></ol></div>
      <div id="u0p1x"></div>
      <sup id="u0p1x"></sup>

        你的位置: 首页 > 公开课首页 > 互联网/语言 > 课程详情

        details

        “Python大数据机器学习实战 ”高级工程师

        暂无评价   
        • 开课时间:2019年04月26日 09:00 周五 已结束
        • 结束时间:2019年04月29日 17:00 周一
        • 开课地点:上海市
        • 授课讲师: 特约老师
        • 课程编号:374596
        • 课程分类:互联网/语言
        •  
        • 收藏 人气:501
        你实际购买的价格
        付款时最多可用0淘币抵扣0元现金
        购买成功后,系统会给用户帐号返回的现金券
        淘课价格
        7800
        可用淘币
        0
        返现金券
        待定

        你还可以: 收藏

        课程大纲:

        培训内容介绍

        课程模块

        课程主题

        主要内容及案例和演示

        模块一

        机器学习的数学基础1 - 数学分析

        1. 机器学习的一般方法和横向比较

        2. 数学是有用的:以SVD为例

        3. 机器学习的角度看数学

        4. 复习数学分析

        5. 直观解?#32479;?#25968;e

        6. 导数/梯度

        7. 随机梯度下降

        8. Taylor展式的落地应用

        9. gini系数

        10. ?#36141;?#25968;

        11. Jensen不等式

        12. 组合数与信息熵的关系

        模块二

        机器学习的数学基础2 - 概?#20107;?#19982;贝叶斯先验

        1. 概?#20107;?#22522;础

        2. 古典概型

        3. 贝叶斯公式

        4. 先验分布/后验分布/共轭分布

        5. 常见概率分布

        6. 泊松分布和指数分布的物理意义

        7. 协?#35762;?矩阵)和相关系数

        8. 独立和不相关

        9. 大数定律和?#34892;?#26497;限定理的实践意义

        10. 深刻理解最大似?#36824;?#35745;MLE和最大后验估计MAP

        11. 过拟合的数学原理与解决方案

        模块三

        机器学习的数学基础3 - 矩阵和线性代数

        1. 线性代数在数学科学中的地位

        2. 马尔科夫模型

        3. 矩阵乘法的直观表达

        4. 状态转移矩阵

        5. 矩阵和向量组

        6. 特征向量的思考和实践计算

        7. QR分解

        8. 对称阵、正交阵、正定阵

        9. 数据白化及其应用

        10. 向量对向量求导

        11. 标量对向量求导

        12. 标量对矩阵求导工作机制

        模块四

        Python基础1 - Python及其数学库

        1. 解释器Python2.7与IDE:Anaconda/Pycharm

        2. Python基础:列表/元组/字典/类/文件

        3. Taylor展式的代码实现

        4. numpy/scipy/matplotlib/panda的介绍和典型使用

        5. 多元高斯分布

        6. 泊松分布、幂律分布

        7. 典型图像处理

        8. 蝴蝶效应

        9. 分形与可视化

        模块五

        Python基础2 - 机器学习库

        1. scikit-learn的介绍和典型使用

        2. 损失函数的绘制

        3. 多种数学曲线

        4. 多项式拟合

        5. 快速傅里叶变换FFT

        6. 奇异值分解SVD

        7. Soble/Prewitt/Laplacian算子与卷积网络

        8. 卷积与(指数)移动平均线

        9. 股票数据分析

        模块六

        Python基础3 - 数据清洗和特征选择

        1. 实际生产问题中算法和特征的关系

        2. 股票数据的特征提取和应用

        3. 一致?#32422;?#39564;

        4. 缺失数据的处理

        5. 环境数据异常检测和分析

        6. 模糊数据查询和数据校正方法、算法、应用

        7. 朴素贝叶斯用于鸢?#19981;?#25968;据

        8. GaussianNB/MultinomialNB/BernoulliNB

        9. 朴素贝叶斯用于18000+篇/Sogou新闻文本的分类

        模块七

        回归

        1. 线性回归

        2. Logistic/Softmax回归

        3. 广义线性回归

        4. L1/L2正则化

        5. Ridge与LASSO

        6. Elastic Net

        7. 梯度下降算法:BGD与SGD

        8. 特征选择与过拟合

        模块八

        Logistic回归

        1. Sigmoid函数的直观解释

        2. Softmax回归的概念源头

        3. Logistic/Softmax回归

        4. 最大熵模型

        5. K-L散度

        6. 损失函数

        7. Softmax回归的实现与调参

        模块九

        回归实践

        1. 机器学习sklearn库介绍

        2. 线性回归代码实现和调参

        3. Softmax回归代码实现和调参

        4. Ridge回归/LASSO/Elastic Net

        5. Logistic/Softmax回归

        6. 广告?#24230;?#19982;销售额回归分析

        7. 鸢?#19981;?#25968;据集的分类

        8. 交叉验证

        9. 数据可视化

        模块十

        决策树和随机森林

        1. 熵、联?#21709;亍?#26465;件熵、KL散?#21462;?#20114;信息

        2. 最大似?#36824;?#35745;与最大熵模型

        3. ID3、C4.5、CART详解

        4. 决策树的正则化

        5. 预剪枝和后剪枝

        6. Bagging

        7. 随机森林

        8. 不平衡数据集的处理

        9. 利用随机森林做特征选择

        10. 使用随机森林计算样本相似度

        11. 数据异常?#23548;?#27979;

        模块十一

        随机森林实践

        1. 随机森林与特征选择

        2. 决策树应用于回归

        3. 多标记的决策树回归

        4. 决策树和随机森林的可视化

        5. 葡萄酒数据集的决策树/随机森林分类

        6. 波士顿?#32771;?#39044;测

        模块十二

        提升

        1. 提升为什么?#34892;?/p>

        2. 梯度提升决策树GBDT

        3. XGBoost算法详解

        4. Adaboost算法

        5. 加法模型与指数损失

        模块十三

        提升实践

        1. Adaboost用于蘑菇数据分类

        2. Adaboost与随机森林的比较

        3. XGBoost库介绍

        4. Taylor展式与学习算法

        5. KAGGLE简介

        6. 泰坦尼克乘客存活率估计

        模块十四

        SVM

        1. 线性可分支持向量机

        2. 软间隔的改进

        3. 损失函数的理解

        4. 核函数的原理和选择

        5. SMO算法

        6. 支持向量回归SVR

        模块十五

        SVM实践

        1. libSVM代码库介绍

        2. 原始数据和特征提取

        3. 葡萄酒数据分类

        4. 数字图像的?#20013;?#20307;识别

        5. SVR用于时间序列曲线预测

        6. SVM、Logistic回归、随机森林三者的横向比较

        模块十六

        聚类(一)

        1. 各种相似度度?#32771;?#20854;相互关系

        2. Jaccard相似度和准确?#30465;?#21484;回率

        3. Pearson相关系数与余弦相似度

        4. K-means与K-Medoids及变种

        5. AP算法(Sci07)/LPA算法及其应用

        模块十七

        聚类(二)

        1. 密度聚类DBSCAN/DensityPeak(Sci14)

        2. DensityPeak(Sci14)

        3. 谱聚类SC

        4. 聚类评价AMI/ARI/Silhouette

        5. LPA算法及其应用

        模块十八

        聚类实践

        1. K-Means++算法原理和实现

        2. 向量量化VQ及图像近似

        3. 并查集的实践应用

        4. 密度聚类的代码实现

        5. 谱聚类用于?#35745;?#20998;割

        模块十九

        EM算法

        1. 最大似?#36824;?#35745;

        2. Jensen不等式

        3. 朴素理解EM算法

        4. 精确推导EM算法

        5. EM算法的深入理解

        6. 混合高斯分布

        7. 主题模型pLSA

        模块二十

        EM算法实践

        1. 多元高斯分布的EM实现

        2. 分类结果的数据可视化

        3. EM与聚类的比较

        4. Dirichlet过程EM

        5. 三维及等高线等?#25216;?#30340;绘制

        6. 主题模型pLSA与EM算法

        模块二十一

        主题模型LDA

        1. 贝叶斯学派的模型认识

        2. Beta分布与二项分布

        3. 共轭先验分布

        4. Dirichlet分布

        5. Laplace平滑

        6. Gibbs采样详解

        模块二十二

        LDA实践

        1. 网络爬虫的原理和代码实现

        2. 停止词和高频词

        3. 动手?#32422;?#23454;现LDA

        4. LDA开源包的使用和过程分析

        5. Metropolis-Hastings算法

        6. MCMC

        7. LDA与word2vec的比较

        8. TextRank算法与实践

        模块二十三

        隐马尔科夫模型HMM

        1. 概率计算问题

        2. 前向/后向算法

        3. HMM的参数学习

        4. Baum-Welch算法详解

        5. Viterbi算法详解

        6. 隐马尔科夫模型的应用优劣比较

        模块二十四

        HMM实践

        1. 动手?#32422;?#23454;现HMM用于中文?#25191;?/p>

        2. 多个语言?#25191;?#24320;源包的使用和过程分析

        3. 文件数据格式UFT-8、Unicode

        4. 停止词和标点符号对?#25191;实?#24433;响

        5. 前向后向算法计算概率溢出的解决方案

        6. 发现新词和?#25191;市?#26524;分析

        7. 高斯混合模型HMM

        8. GMM-HMM用于股票数据特征提取

        模块二十五

        课堂提问与互动讨论

        五、师资介绍

        张老师:阿里大数据高级专家,国内资深的Spark、Hadoop技术专家、虚拟化专家,对HDFS、MapReduce、HBase、Hive、Mahout、Storm、spark和openTSDB等Hadoop生态系统中的技术进行了多年的深入的研究,更主要的是这些技术在大量的实际项目中得到广泛的应用,因此在Hadoop开发和运维方面积累了丰富的项目实施经验。近年主要典型的项目有:某电信集团网络优化、中国移动某省移动公司请账单系统和某省移动详单实时查询系?#22330;?#20013;国银联大数据数据票据详单平台、某大型银行大数据记录系?#22330;?#26576;大型通信运营商全国用户上网记录、某省交通部门违章系?#22330;?#26576;区域医疗大数据应用项目、互联网公共数据大云(DAAS)和构建游戏云(Web Game Daas)平台项目?#21462;?/p>

        六、颁发证书

        参加相关培训并通过考试的学员,可以获得:

        颁发的-《Python大数据工程师证书》。该证书可作为专业技术人员职业能力考核的证明,以及专业技术人员岗位聘用、任职、定级和晋升职务的重要依据。注:请学?#36125;?#19968;寸?#25910;?张(背面注明姓名)、身份证复印件一张。

        七、培训费用及须知

        7800元/人(含教材、培训费、考证费以及学习用具等费用) ?#20056;?#32479;一安排,费用自理。

        本课程名称: “Python大数据机器学习实战 ”高级工程师

        查看更多:互联网/语言公开课

        IT技能 相关的最新课程
        讲师动态评分 与同行相比

        授课内容与课纲相符00%

        讲师授课水平00%

        服务态度00%

        摇钱树论坛香港赛马会资料中心网址
        <dl id="u0p1x"><menu id="u0p1x"><small id="u0p1x"></small></menu></dl>

          <sup id="u0p1x"></sup>

          <div id="u0p1x"><ol id="u0p1x"><thead id="u0p1x"></thead></ol></div>
            <div id="u0p1x"></div>
            <sup id="u0p1x"></sup>

              <dl id="u0p1x"><menu id="u0p1x"><small id="u0p1x"></small></menu></dl>

                <sup id="u0p1x"></sup>

                <div id="u0p1x"><ol id="u0p1x"><thead id="u0p1x"></thead></ol></div>
                  <div id="u0p1x"></div>
                  <sup id="u0p1x"></sup>

                    极速快3计划 天津快乐10分网站 赌场一块发三张牌的叫什么 2019年2月七星彩走势图 广东11选5爱 安徽时时彩平台下载 大乐透前选号方法 儿童娱乐场所加盟图片 山东11选5前3 单双中特准高手版 泳坛夺金数据 体彩排3p3试机号彩吧 河北快三走势图形态走势图 法甲第二轮内马尔 1621期海口七星彩早版